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Extending the Riemann-Solver-Free High-Order Space-Time 
Discontinuous Galerkin Cell Vertex Scheme (DG-CVS) to Solve 

Compressible Magnetohydrodynamics Equations

Final Report to AFOSR
Grant Number: FA9550-13-1-0092

Reporting Period: March, 2013 - March, 2016

PI: Shuang Z. Tu

Jackson State University
Jackson, Mississippi, 39217, USA

This final report summarizes our major accomplishments on the research under AFOSR Grant FA9550-
13-1-0092 during the project period between March, 2013 - March, 2016.

In this project, we continue our development of our Riemann-solver-free spacetime discontinuous Galerkin
method for general conservation laws to solve compressible magnetohydrodynamics (MHD) equations. The
method is first applied to solve the 3⇥ 3 MHD model system in the phase space which exactly preserves the
MHD hyperbolic singularities. Numerical results show that the method is able to solve the model system
correctly, which makes the method very promising in solving the complete ideal MHD equations. The method
is then extended to solve the 1-D 7 ⇥ 7 and 2-D 8 ⇥ 8 MHD equations. The Powell’s approach by adding
appropriate source terms is adopted to handle the r ·B = 0 condition. Again, the numerical results show
that the present method is able to resolve the complex MHD waves without the need of any type of Riemann
solvers or other flux functions. The success of solving MHD equations further strengthens our belief that
the DG-CVS is an e↵ective approach in solving systems where accurate and reliable Riemann solvers are
di�cult to design.

1 Background

This project continues our previous AFOSR projects (Grant No. FA9550-08-1-0122 and Grant No. FA9550-
10-1-0045) to extend and verify our high order spacetime discontinuous Galerkin cell vertex scheme (DG-
CVS) toward solving the magnetohydrodynamics (MHD) equations.

The magnetohydrodynamics (MHD) equations are often used to model electrically conducting fluid flows
where the electromagnetic forces can be of the same order as, or even greater than, the hydrodynamic forces.
Plasmas in hypersonic and astrophysical flows are one of the most typical examples of such conductive fluids.
Though MHD models are a low order approximation of actual plasma processes, they have been successfully
applied to simulate many important plasma processes. Today, the MHD models remain powerful tools in
helping researchers to understand the complex physical processes in the geospace environment.

For example, the ideal MHD equations combines the Euler equations of gas dynamics with Maxwell equa-
tions of electromagnetics for problems in which viscous, resistive and relativistic e↵ects can be neglected. The
ideal MHD equations contain a set of nonlinear hyperbolic equations as shown in the following conservative
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Here, ⇢, v, E, P , µ0 andB represent the mass density, the velocity vector, the total energy, the hydrodynamic
pressure, permeability of vacuum and the magnetic field. In addition to satisfying the induction equation
(Eq. (1d) above), the magnetic field is also divergence free, i.e. r · B = 0 which can be considered as an
extra constraint.

As can be seen in Eqs. (1a-1d), the MHD equations are complicated nonlinear partial di↵erential equa-
tions (PDEs) that require some numerical method to solve for general problems. Since MHD flow fields may
develop shock waves, contact discontinuities and shear layers, the numerical schemes are required to be of
high resolution which are able to resolve all kinds of discontinuities accurately and robustly.

1.1 Traditional Numerical Methods for MHD Equations

Due to its close mathematical similarity to the Euler equations of gas dynamics, the MHD equation system is
often solved by various methods extended from those originally designed for Euler equations. The Godunov-
typed methods use exact or approximate Riemann solvers to provide numerical inter-cell spatial fluxes. Since
the MHD equations contain much more complicated wave structures than the compressible Euler equations,
the (approximate) Riemann solvers for Euler equations must be sophisticatedly modified or even redesigned
to handle the degeneracies and instabilities of the MHD equations.

Two of the most widely used approximate Riemann solver families, the Roe scheme [1] and the HLL
(Harten, Lax and van Leer) scheme [2] and its two-state variant, HLLC scheme [3, 4], have gained increasing
popularity in solving the MHD equations. For example, see [5, 6, 7] for MHD solvers based on the Roe’s
scheme and [8, 9, 10, 11] for MHD solvers based on the HLL or HLLC scheme. Roe’s scheme requires eigen-
decomposition and becomes very complicated in MHD equations. For example, the Roe averages of quantities
are not clearly defined in MHD system. Moreover, due to the complexity and non-strict hyperbolicity of the
MHD system, the validity of the eigensystems of the MHD system is not unanimously agreed upon among
researchers. The HLL or HLLC based Riemann solvers exhibits several advantages over Roe’s scheme. For
example, the HLLC scheme preserves positivity, satisfies the entropy condition and does not need eigen-
decomposition of the system. The accuracy of MHD solvers is dependent on the underlying Riemann solvers
[12]. Therefore, the use of Riemann solvers adds uncertainties to the accuracy of MHD solvers. The kinetic
MHD scheme [13, 14, 15] is a flux vector splitting method with the consideration of particle transport. It
is claimed to be more e�cient than other Riemann-solver based MHD schemes due to the simplicity of the
kinetic flux functions [14].

In addition to upwind schemes, the fully discrete [16] or semi-discrete [17] central schemes can also be used
for MHD equations. Fully discrete central schemes use staggered grids to evolve cell averages and eliminate
the need for the information of the eigenstructure of the system. Moreover, central schemes eliminate the
need for dimensional splitting [16]. Central schemes are considered as Riemann-solver-free methods. Central
schemes are very attractive in that the notorious pathological phenomena associated with some Riemann
solvers are absent in Riemann-solver-free methods.

Another issue when solving the MHD equations using numerical methods is how to preserve r ·B = 0
for the magnetic field. Failure to enforcing this divergence-free constraint may lead to a nonlinear numerical
instability. Several approaches are available to preserve this constraint. One approach is to use the projection
method [18] by solving a Poisson equation for the magnetic potential which can be used to correct the non-
divergence-free magnetic field. In Ref. [19], a DG method using locally divergence-free piecewise polynomials
as the solution space is presented to solve the MHD equations. Another so-called Powell approach [7] is to
add source terms proportional to r · B to the ideal MHD equations. Despite some success, this approach
leads to a non-conservative formulation which may result in incorrect weak solution. It is also possible to
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use a generalized Lagrange multiplier method [20] to “clean” the divergence error. Instead of solving an
elliptic Poisson equation, this approach solves a damped hyperbolic equation for the divergence error with
appropriately chosen parameters. In Ref. [21], the magnetic vector potential A is solved in place of the
magnetic field B itself. Since r · (r⇥A) = 0 is guaranteed mathematically, solving A automatically leads
to r · B = 0. However, setting the boundary conditions for the vector potential is not straightforward.
Another very popular method is the constrained transport (CT) method of Evans and Hawley [22]. The CT
method can be considered as a predictor-corrector approach for the magnetic field [23]. It uses the computed
conservative variables to approximate the electric field which is used to update the magnetic vector potential.
The magnetic vector potential is then used to compute the divergence-free magnetic field. The CT method
does not need to solve a global elliptic equation and has no free parameters. The CT method and its variants
have been investigated by many researchers[24, 25, 23].

In this project, we solve the following system [26, 7].
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1.2 Riemann-Solver-Free DG-CVS for General Conservation Laws

A novel high order discontinuous Galerkin cell-vertex scheme (DG-CVS) [27, 28, 29, 30, 31, 32, 33] has been
developed for hyperbolic conservation laws under the support from AFOSR. DG-CVS was inspired by the
spacetime Conservation Element/Solution Element (CE/SE) [34] method and the discontinuous Galerkin
(DG) [35] method. The main features of DG-CVS are summarized as follows:

• based on space-time formulation. Therefore, DG-CVS automatically satisfies the Geometric Conserva-
tion Law (GCL) and solves moving mesh problems [36] without special care as needed by ALE-based
methods.

• arbitrary high-order accuracy in both space and time. Space and time are handled in a unified way
based on space-time flux conservation and high-order space-time discontinuous basis functions. This is
in contrast to semi-discrete methods where the temporal order of accuracy is limited by the Backward
Di↵erence Formula (BDF) or the multi-step Runge-Kutta method.

• Riemann-solver free. DG-CVS does not need a (approximate) Riemann solver to provide numerical
fluxes as needed in finite volume or traditional DG methods. The Riemann-solver-free feature o↵ers
two-fold advantages. First, this Riemann-solver-free approach eliminates some pathological behaviors
(e.g., carbuncle phenomenon, expansion shocks, etc.) associated with some Riemann solvers. Second,
it is suitable for any hyperbolic PDE systems whose eigenstructures are not explicitly known. The
DG-CVS based solvers have been successfully applied to solve scalar advection-di↵usion equations [31],
compressible Euler equations [27, 33], shallow water equations [37] and the level set equation [38] (see
Fig. ?? for simulation examples using the DG-CVS method).

• reconstruction free. DG-CVS solves for the solution and its all spatial and temporal derivatives simul-
taneously at each space-time node, thus eliminating the need of reconstruction.

• suitable for arbitrary spatial meshes. The CE and SE definitions in DG-CVS are independent of the
underlying spatial mesh and the same definitions can be easily extended from 1-D (cf. Fig. 1) to
higher-dimensions (cf. Fig. 2) without any ambiguity. Though not shown, the same CE and SE
definitions also apply to meshes with hanging nodes [30].

• highly compact regardless of order of accuracy. Only information at the immediate neighboring nodes
will be needed to update the solution at the new time level. Compactness eases the parallelization of
the flow solver.

• also accurately solves time-dependent di↵usion equations. Note that the treatment of di↵usion terms
in traditional semi-discrete DG methods are non-trivial because of the so-called “variational crime”.
In DG-CVS, the inclusion of di↵usion terms is straightforward and simple in exactly the same way
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Figure 1: Solution elements (SEs) and conservation elements (CEs) in the x � t domain. Left: solution
elements and right: conservation elements.

how advection terms are handled by simply incorporating the di↵usive flux into the space-time flux
[31]. No extra reconstruction or recovery or ad hoc penalty and coupling terms are needed to ensure
the consistency of the variational form for di↵usive terms. For this reason, DG-CVS is conceptually
simper than other existing DG methods for di↵usion equations.

The DG-CVS method integrates the best features of the space-time Conservation Element/Solution Element
(CE/SE) method [34] and the discontinuous Galerkin (DG) method [35]. The core idea is to construct a
staggered space-time mesh through alternate cell-centered CEs and vertex-centered CEs (cf. Fig. 1 (right))
within each time step. Inside each SE (cf. Fig. 1 (left)), the solution is approximated using high-order
space-time DG basis polynomials. The space-time flux conservation is enforced inside each CE using the
DG discretization. The solution is updated successively at the cell level and at the vertex level within each
physical time step. For this reason and the method’s DG ingredient, the method was named as the space-time
discontinuous Galerkin cell-vertex scheme (DG-CVS).

DG-CVS equally works on higher dimensions on arbitrary grids. Figure 2 shows the conservation elements
and solution elements on quadrilateral meshes and triangular meshes. Obviously, the definitions of CEs and
SEs on higher dimensions are analogous to that for 1-D meshes (cf. Fig. 1). Figure 3 demonstrates the
resulting dual mesh at the cell level and the vertex level for both rectangular meshes and triangular meshes,
respectively.

As a Riemann-solver free method, DG-CVS di↵ers from other Riemann-solver free central schemes [16, 17]
in that DG-CVS employs spacetime discontinuous Galerkin polynomials inside the solution element and
therefore is arbitrarily high order in both space and time. Some space-time DG methods like the STE-DG
(space-time expansion discontinuous Galerkin) scheme [39] also approximates solution using high-order space-
time basis polynomials but it requires some numerical flux function and thus is subject to the shortcomings
associated with Riemann solvers.

2 Summary of Major Accomplishments

During the period of this project, we have accomplished the following:

• It has been verified that the DG-CVS method solves 3⇥ 3 MHD model equations in the phase space.
• The method has been successfully extended to solve the ideal 1D 7-eq. MHD equations.
• The method has been successfully extended to solve the ideal 2D 8-eq. MHD equations.
• It has been verified that Powell’s approach by adding appropriate source terms in the governing equations
is e↵ective in handling the r ·B = 0 condition in the current solution framework.
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Figure 2: Conservation elements (CEs) and solution elements (SEs) in the x� y� t domain. First row: CEs
for rectangular meshes, second row: CEs for triangular meshes, third row: SEs for rectangular meshes, and
fourth row: SEs for triangular meshes.
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Figure 3: Dual meshes for the solution updating at the cell level (in red) and the vertex level (in black).
Left: rectangular mesh and right: triangular mesh.

3 Description of the Spacetime Discontinuous Galerkin Cell-Vertex
Scheme

To illustrate the DG-CVS formulation, without loss of generality, we consider the following general one-
dimensional time dependent partial di↵erential equation system

@u(x, t)

@t

+
@f

@x

= r (3)

that arises from some physics. Here, u is the solution vector containing the physical quantities to be
determined. f is the spatial flux vector. Without loss of generality, a source term r is also included in
Eq. (3). Note that since DG-CVS solves both advection and di↵usion problems in an identical way, f may
contain both advective and di↵usive fluxes. Therefore, f can be functions of u or ru or both. Appropriate
initial and boundary conditions must also be provided to solve Eq. (3).

3.1 Space-Time Discontinuous Galerkin Formulation

Following the idea of the discontinuous Galerkin (DG) method, an approximate solution uh is sought within
each space-time solution element (SE), denoted as K. When restricted to the SE, uh belongs to the fi-
nite dimensional space U(K). Assume all the components of the conservative variables inside each SE are
approximated by polynomials of the same degree, i.e

uh(x, t) =
NX

j=1

s
j

�

j

(x, t) (4)

where {�
j

(x, t)}N
j=1 are some type of space-time polynomial basis functions defined within the solution

element, {s
j

}N
j=1 are the unknowns to be determined and N is the number of basis functions depending on

the degree of the polynomial function. Using such space-time DG solution space, the solution approximation
can be arbitrarily high order accurate in both space and time.

Following the Galerkin orthogonality principle, multiply (3) with each of the basis functions �

i

(i =
1, 2, · · · , N) and integrate over a space-time CE to obtain the weak form

ˆ
⌦K

�

i

✓
@uh

@t

+
@fh

@x

� rh
◆
d⌦ = 0, i = 1, 2, · · · , N (5)

where ⌦
K

is the space-time conservation element (CE) associated with the solution element K. Note that
the conservation element is identical to the solution element except for the volumeless vertical spike in the
solution element as shown in Fig. ??. The space-time flux conservation in weak form as in (5) is for each
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individual space-time conservation element. Therefore, the current method can be considered as a space-
time discontinuous Galerkin method. As can be seen, the space-time flux conservation is enforced in the
variational form (5).

Integrating (5) by parts results inˆ
⌦K


@�

i

@t

uh +
@�

i

@x

fh + �

i

rh
�
d⌦ =

ˆ
�
�

i

Hh · nd� (6)

where
Hh = (fh, uh) (7)

is the space-time flux tensor and n = (n
x

, n

t

) is the outward unit normal of the CE boundary, i.e. � = @⌦
K

,
of the space-time conservation element (CE) under consideration. Note that the partial integration is also
performed on the time-dependent term, which is a salient di↵erence between space-time DG methods and
semi-discrete DG methods. As can be seen, the formulation in (6) contains both the volume integral and
the surface integral.

3.2 Cell-Vertex Solution Updating Strategy

The DG-CVS inherits the core idea of the CE/SE method using a staggered space-time mesh to enforce
the space-time flux conservation. However, the construction of the staggered space-time slabs in DG-CVS
deviates from the CE/SE method. In DG-CVS, unknowns are stored at both vertices and cell centroids of
the spatial mesh, and the solutions at vertices and cell centroids are updated at di↵erent time levels within
each time step. At the beginning of each physical time step, the solution is assumed known at the vertices of
the mesh, either given as the initial condition or obtained from the previous time step. Inside each new time
step, the solution is updated in two successive steps. The first step updates the solution at cell centroids at
the half-time level (tn+1/2) based on the known vertex solutions at the previous time level (tn). The second
step updates the solution at vertices at the new time level (tn+1) based on the known cell solutions at the
previous half-time level (tn+1/2). The same process is repeated for new time steps.

The solution updating at the cell level or the vertex level is based on the key equation (6). First divide
the conservation element into the following portions:

• the interior volume ⌦
K

where the solution is associated with the space-time node at the new time
level.

• the top surface �top where the solution is also associated with the space-time node at the new time
level.

• the side surfaces �side where the solution is associated with the space-time node at the previous time
level.

• the bottom surfaces �bott where the solution is also associated with the space-time node at the previous
time level.

Correspondingly, Eq. (6) can be rearranged to yield
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where the left hand side contains the unknowns and the right hand side contains the known information.
Since the top and the bottom surface of the CE are horizontal, which leads to Hh · n = uh on the top

face and Hh · n = �uh on the bottom face, Eq. (8) can be simplified toˆ
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Figure 4: Illustration of space-time flux conservation on a 1-D cell-level CE.

To further illustrate the idea of enforcing the space-time flux conservation, consider the conservation
element shown in Fig. 4. Suppose the solution at the spacetime node (m + 1

2 , n + 1
2 ) is to be determined.

Here, m and n represents the spatial and the temporal locations of the space-time node, respectively. The
boundaries of the CE associated with the spacetime node (m + 1

2 , n + 1
2 ) is divided into five sections �1,

�2, �3, �4 and �5, as shown in Figure 4. Among these sections, �1 belongs to the SE associated with node
(m + 1

2 , n + 1
2 ) whose solutions are to be determined, �2 and �3 the SE associated with node (m,n) and

�4 and �5 the SE associated with node (m+ 1, n). The interior volume of the conservation element is also
associated with node (m+ 1

2 , n+ 1
2 ). Eq. (9) is a nonlinear equation system for each space-time node which

can be solved by the Newton-Raphson iterative method.
As can be seen, with this staggered space-time cell-vertex solution updating strategy, no Riemann-solver-

typed flux functions are needed for the interface flux. There is no “left state” and “right state” when
evaluating inter-cell fluxes as Riemann solvers do. Our Riemann-solver free DG-CVS method is able to
capture all flow features (shock waves, contact discontinuities, etc.) without pathological phenomena such
as the expansion shock. DG-CVS equally works for the shallow water equations, scalar advection-di↵usion
equations and the level set equation in addition to compressible Euler equations.

3.3 Quadrature-Free Implementation

To improve e�ciency, the integrals on the left hand side of Eq. (9) are evaluated using a quadrature-free
approach.

To allow the quadrature-free implementation, the flux and source vectors must be expanded in terms of
the basis polynomials similar to those used to expand the conservative variables, namely,

fh =
ÑX

j=1

sf
j

�

j

, gh =
ÑX

j=1

sg
j

�

j

, and rh =
ÑX

j=1

sr
j

�

j

. (10)

where Ñ is the number of basis polynomials of one degree higher than those to expand the conservative
variables as in Eq. (4). The requirement of using basis polynomials of degree p + 1 is necessary to ensure
the accuracy of the scheme.

The method based on the Cauchy-Kovalewski (CK) procedure[40, 41] is especially suitable for our pur-
pose. In DG-CVS, the conservative variables are expanded using the Taylor polynomials. With the Taylor
polynomials, the spatial and temporal derivatives of the solution are explicitly available. Using the CK
procedure, the space-time derivatives of the flux vectors can be obtained using the space-time derivatives
of the conservative variables. The detailed procedure has been described for Euler equation in our earlier
paper[33] and will not be repeated here.

4 Major Progress #1: Solving the MHD Model Equations

The present Riemann-solver-free method has been first applied to solve the following 3 ⇥ 3 MHD model
system in the phase space which exactly preserves the MHD singularities[42]:

u
t

+ f
x

= du
xx

(11)
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where the longitudinal viscosity µ and the magnetic resistivity ⌘ are the dissipative coe�cients, and the Hall
coe�cient � is a dispersive coe�cient.

The above quantities are related to the MHD system via
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�p/⇢ is the acoustic wave speed, c
a

=
p
⇢|B

x

| is the Alfven wave speed, p is the pressure, ⇢ is
the density and � is the ratio of specific heats.

The model system (11) generates three wave families which are the Alfven wave, the slow and the fast
MHD waves. This model system has been investigated by several authors [42, 43] to provide insights to
improve Godunov-typed numerical schemes for MHD equations.

The two test cases presented in this section are taken from Ref. [43] where conventional and modified
Roe’s scheme were used to solve the system. In all the cases, c = 3 and the computational domain [0, 1]
is evenly divided into 150 cells. In both test cases, the dissipative term on the right hand side of (11) is
assumed to be zero.

4.1 Case 1

The initial discontinuity is a fast switch-o↵ expansive shock defined as

u
L

= (�u0, 0, 0) and u
R

= (u0, 2u0, 0)

with u0 = 1 in this case. The final time is t = 0.0295085. 150 time steps are run to reach the time step.
Figure 5 shows u vs. x and v vs. x solutions from the p1 (second order) simulation. As can be seen,

without any entropy fix, the present Riemann solver free method does not produce expansion shocks. The
comparison between the analytical solutions and the present solutions demonstrate the accuracy of the
present method.

4.2 Case 2

The initial discontinuity is an entropy-violating shock defined as
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Figure 6: Solutions of Case 2 by solving the model equations. u
L

= �u
R

= (�0.44, 2.4, 0) at
t = 0.0376506024.

u
L

= �u
R

= (�0.44, 2.4, 0)

The final time is t = 0.0376506024. 150 time steps have been run to reach the final time.
Figure 6 shows u vs. x and v vs. x solutions from the second order simulation along with the analytical

solutions. Again, the agreement is very well and the overshoots/undershoots around the discontinuity region
have been suppressed.

5 Major Progress #2: Solving the Ideal 1D 7-Eq MHD Equations

Assuming B

x

= const., the ideal MHD equations reduce to a 7 ⇥ 7 system where the state vector and the
flux vector are

u =

2

666666664

⇢

⇢u

x

⇢u

y

⇢u

z

⇢E

B

y

B

z

3

777777775

and f =

2

666666664

⇢u

x

⇢u

2
x

+ p+ 1
2 |B|2 �B

2
x

⇢u

x

u

y

�B

x

B

y

⇢u

x

u

z

�B

x

B

z

u

x

�
⇢E + p+ 1

2 |B|2
�
�B

x

(u
x

B

x

+ u

y

B

y

+ u

z

B

z

)
u

x

B

y

� u

y

B

x

u

x

B

z

� u

z

B

x

3

777777775

Since B

x

is constant, the divergence-free condition of the magnetic field is automatically satisfied.
We are testing the test cases proposed by [5]. The problems are simulated by solving the 7⇥ 7 1-D Ideal

MHD Equations. The problem to be solved is a one-dimensional Riemann problem on the computational
domain [�1, 1]. For both cases below, the primitive variables are defined as q = [⇢, u, v, w, p,B

y

, B

z

]T .

5.1 Brio-Wu Case 1:

In this case, the initial states are given as

q
L

= (1.000, 0, 0, 0, 1000, 1.0, 0.0)T and q
R

= (0.125, 0, 0, 0, 0.1,�1.0, 0.0)T

with B

x

= 0 and � = 2.
If one define

p

⇤ = p+
1

2
|B|2

this case is then exactly the same as the gas dynamics shock tube problem except the equation for B

y

.
Figure 7 shows the numerical solution at T = 0.012 together with the available analytical solution.
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Figure 7: Solutions of Brio-Wu Case 1. B
x

= 0. T = 0.012.

It can be seen that the numerical results agrees well with the analytical solution except for the slight
overshoots/undershoots around discontinuities. Note that no any type of limiting procedure is employed to
obtain the current solution shown in Fig. 7.

5.2 Brio-Wu Case 2:

In the second case, the initial states, separated at x = 0, are given as

q
L

= (1.000, 0, 0, 0, 1.0, 1.0, 0.0)T and q
R

= (0.125, 0, 0, 0, 0.1,�1.0, 0.0)T

with B

x

= 0.75 and � = 2. Figure 8 shows the unlimited (left) and limited (right) solutions at T = 0.2.
As can be seen, the complex MHD waves including the compound wave, the shock wave, contact dis-

continuity and rarefaction waves can be captured by the present Riemann-solver free method. However, the
unlimited solutions exhibit some non-physical overshoots and undershoots near discontinuities (left column
in Fig. 8). These overshoots/undershoots can be suppressed (right column in Fig. 8) using a minmod-typed
limiting procedure.

6 Major Progress #3: Solving the Ideal 2D 8-Eq MHD Equations

The 8⇥8 ideal MHD equations in 2-D is then solved. Here the state vector u = [⇢, ⇢u
x

, ⇢u

y

, ⇢u

z

, ⇢E, B

x

, B

y

, B

z

]T

and the flux vectors are

f =

2

66666666664

⇢u

x

⇢u

2
x

+ p+ 1
2 |B|2 �B

2
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⇢u

x
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�
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and g =

2

66666666664
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Figure 8: Solutions of Brio-Wu Case 2. B

x

= 0.75. T = 0.2. Left column: unlimited solutions. Right
column: limited solutions.
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The 2-D case solved here is a MHD vortex advection problem. The solution is a vortex advected with the
magnetic field diagonally in a square [�5, 5] ⇥ [�5, 5] domain. Periodic boundary conditions are assumed.
The computational domain is discretized by a 32⇥32 rectangular mesh. The solution is initialized as follows
[19]:

⇢ = 1.0

u = 1.0 +
1

2⇡
e

0.5(1�r

2)(�y)

v = 1.0 +
1

2⇡
e

0.5(1�r

2)
x

w = 0.0

p = 1.0 +
1

8⇡2
e

1�r

2

(�r

2)

B

x

=
1

2⇡
e

0.5(1�r

2)(�y)

B

y

=
1

2⇡
e

0.5(1�r

2)
x

B

z

= 0.0

where r

2 = x

2 + y

2.
Figure 9 shows the magnetic field and velocity magnitude field at T = 0.0 and T = 10.0. It can seen that

the solution fields have been preserved well after one period’s advection.

7 Acknowledgment/Disclaimer

This work was sponsored by the Air Force O�ce of Scientific Research under grant number FA9550-13-1-
0092. The views and conclusions contained herein are those of the author and should not be interpreted
as necessarily representing the o�cial policies or endorsements, either expressed or implied, of the Air
Force O�ce of Scientific Research or the U.S. Government. The authors are also grateful to the School of
Engineering and the Department of Computer Engineering at Jackson State University for their support.

8 Publications

This project has produced the following full-length journal and conference articles.

1. S. Tu, “A Riemann-solver Free Spacetime Discontinuous Galerkin Method for General Conservation
Laws,” American Journal of Computational Mathematics, Vol. 5, No. 2, (2015), pp. 55-74.

2. S. Tu and H. Song and L. Ji and Q. Pang, “Further Development of a Riemann-solver Free Space-
time Discontinuous Galerkin Method for Compressible Magnetohydrodynamics (MHD) Equations”,
presented at AIAA Orlando SciTech Conference 2015, AIAA Paper 2015-0567.

3. S. Tu, Q. Pang and R.S. Myong, “Riemann-solver Free Space-time Discontinuous Galerkin Method
for Magnetohydrodynamics,” presented at AIAA San Diego Summer Conference 2013, AIAA Paper
2013-2755.

9 Personnel Supported

• Shuang Z. Tu, faculty member (PI).
• Yongze Liu, graduate student.
• Fariba Samiel, graduate student.
• Lei Zhang, Master’s graduate student.
• LeSamuel Jimel Gardner, undergraduate student.
• Chao Jiang, undergraduate student.

13

DISTRIBUTION A: Distribution approved for public release.



(a) B
x

-field. Left t = 0.0, right t = 10.0.

(b) B
y

-field. Left t = 0.0, right t = 10.0.

(c) Velocity magnitude field. Left t = 0.0, right t = 10.0.

Figure 9: MHD vortex advection problem.
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The method is first applied to solve the 3 by 3 MHD model system in the phase space which exactly
preserves the MHD hyperbolic singularities. Numerical results show that the method is able to solve the
model system correctly, which makes the method very promising in solving the complete ideal MHD
equations. The method is then extended to solve the 1-D 7 by 7 and 2-D 8 by 8 MHD equations. The
Powell's approach by adding appropriate source terms is adopted to handle the divergence-free magnetic
field condition. Again, the numerical results show that the present method is able to resolve the complex
MHD waves without the need of any type of Riemann solvers or other flux functions. The success of solving
MHD equations further strengthens our belief that the DG-CVS is an effective approach in solving systems
where accurate and reliable Riemann solvers are difficult to design.
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